构建一个CPU模拟器
一、概述
本章节介绍的是windows环境下unicorn框架和capstone框架的使用。
二、工具
Visual stdio 2019
Cmake
Git
三、构建步骤
clone unicorn和capstone框架的源码。(注意clone的分支为最新版本,不是master)
1
2git clone https://github.com/unicorn-engine/unicorn.git
git clone https://github.com/capstone-engine/capstone.git编译unicorn
使用git bash或者cmd进入unicorn目录,执行下面几条命令
1
2
3mkdir build
cd build
cmake .. -G "Visual Studio 16 2019" -A "x64" -DCMAKE_BUILD_TYPE=Release接着在build目录下会生成一个unicorn.sln文件,使用visual stdio 2019打开,编译输出。在build目录下会生成unicorn.lib,在build/debug目录下会生成许多文件,只需要unicorn.dll即可
编译capstone
使用visual stdio 2019打开capstone/msvc目录下的capstone.sln文件,编译之后在capstone\msvc\x64\Debug目录下会生成capstone.dll和capstone.lib文件。
创建模拟器项目
使用visual stdio 2019创建一个新项目,然后导入上面两步骤生成的文件,再将上述框架中capstone和unicorn头文件(在include目录下)放入工程根目录中。
实现代码
下面是模拟x86架构64位程序代码片段,其中test_00007FF6B9541000.bin是.text段的内存dump文件,test_00000039AB52A000.bin为.stack段内存dump,test_00007FF6B9549000.bin为.rdata段内存dump,test_00007FF6B954C000.bin为.data段内存dump,test_00007FF6B9531000.bin为.textbss段内存dump。1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
csh g_x64_cs_handle = NULL;
cs_insn* g_x64_cs_insn = NULL;
size_t g_x64_cs_count = 0; // how many instruction that this capstone API disassembly successfully
cs_err g_x64_cs_err = CS_ERR_OK;
uc_engine* g_x64_uc = NULL;
uc_err g_x64_uc_err = UC_ERR_OK; // error number that unicorn emulate instruction
DWORD64 g_x64_instruction_count = 0;
REG_X86 g_x64_reg = { 0 }; // init register
//#define CODE "\x55\x48\x8b\x05\xb8\x13\x00\x00"
VOID x64_init_registers()
{
g_x64_reg.reg.r_rax = 0x00007FF6B9541230;
g_x64_reg.reg.r_rcx = 0x00000039AB77F000;
g_x64_reg.reg.r_rdx = 0x00007FF6B9541230;
g_x64_reg.reg.r_rbx = 0x0000000000000000;
g_x64_reg.reg.r_rsp = 0x00000039AB52FDB8;
g_x64_reg.reg.r_rbp = 0x0000000000000000l;
g_x64_reg.reg.r_rsi = 0x0000000000000000;
g_x64_reg.reg.r_rdi = 0x0000000000000000;
g_x64_reg.reg.r_rip = 0x00007FF6B9542330;
g_x64_reg.reg.r_rflag = 0x0000000000000246;
g_x64_reg.reg.r_r8 = 0x00000039AB77F000;
g_x64_reg.reg.r_r9 = 0x00007FF6B9541230;
g_x64_reg.reg.r_r10 = 0x00007FFFBD807C90;
g_x64_reg.reg.r_r11 = 0x0000000000000000l;
g_x64_reg.reg.r_r12 = 0x0000000000000000l;
g_x64_reg.reg.r_r13 = 0x0000000000000000l;
g_x64_reg.reg.r_r14 = 0x0000000000000000l;
g_x64_reg.reg.r_r15 = 0x0000000000000000l;
}
x64_FileInformation fileinfo[] =
{
// BaseAddress FileSize Path allocate buffer address
(PVOID)0x00007FF6B9541000 , 0x8000 , L".\\x64_binary\\test_00007FF6B9541000.bin" , NULL , //.text
(PVOID)0x00000039AB52A000 , 0x6000 , L".\\x64_binary\\test_00000039AB52A000.bin" , NULL , //.stack
(PVOID)0x00007FF6B9549000 , 0x3000 , L".\\x64_binary\\test_00007FF6B9549000.bin" , NULL , //.rdata
(PVOID)0x00007FF6B954C000 , 0x1000 , L".\\x64_binary\\test_00007FF6B954C000.bin" , NULL , //.data
(PVOID)0x00007FF6B9531000 , 0x10000 , L".\\x64_binary\\test_00007FF6B9531000.bin" , NULL , //.textbss
};
VOID x64_emulate()
{
g_x64_cs_err = cs_open(CS_ARCH_X86, CS_MODE_64, &g_x64_cs_handle);
g_x64_uc_err = uc_open(UC_ARCH_X86, UC_MODE_64, &g_x64_uc);
if (g_x64_cs_err || g_x64_uc_err)
{
printf("ERROR: Failed to initialize engine!\n");
return;
}
cs_option(g_x64_cs_handle, CS_OPT_DETAIL, CS_OPT_ON);
for (ULONG i = 0; i < sizeof(fileinfo) / sizeof(fileinfo[0]); i++)
{
FILE* pFile = NULL;
fileinfo[i].buffer = (PVOID)malloc(fileinfo[i].FileSize);
if (!fileinfo[i].buffer)
{
printf("Allocate mem fail!\n");
return;
}
pFile = _wfopen(fileinfo[i].FileName, L"rb");
if (!pFile)
{
printf("open file error code : <%d>\n", GetLastError());
return;
}
fread(fileinfo[i].buffer, fileinfo[i].FileSize, 1, pFile);
if (pFile)
fclose(pFile);
g_x64_uc_err = uc_mem_map(g_x64_uc, (DWORD64)fileinfo[i].BaseAddress, fileinfo[i].FileSize, UC_PROT_ALL);
if (g_x64_uc_err)
{
printf("uc mem map error!Error Code:<%d>\n", g_x64_uc_err);
return;
}
g_x64_uc_err = uc_mem_write(g_x64_uc, (DWORD64)fileinfo[i].BaseAddress, fileinfo[i].buffer, fileinfo[i].FileSize);
if (g_x64_uc_err)
{
printf("uc mem write error!Error Code:<%d>\n", g_x64_uc_err);
return;
}
}
x64_init_registers();
x64_write_uc_registers();
BYTE Code[32] = { 0 };
do
{
uc_mem_read(g_x64_uc, g_x64_reg.reg.r_rip, Code, sizeof(Code));
g_x64_cs_count = cs_disasm(g_x64_cs_handle, Code, sizeof(Code), g_x64_reg.reg.r_rip, 1, &g_x64_cs_insn);
if (!g_x64_cs_count)
break;
g_x64_uc_err = uc_emu_start(g_x64_uc, g_x64_reg.reg.r_rip, 0xffffffffffffffff, 0, 1);
x64_read_uc_registers();
x64_print_uc_registers();
x64_print_uc_stack(g_x64_reg.reg.r_rsp);
cs_free(g_x64_cs_insn, 1);
if (g_x64_uc_err)
{
printf("uc_emu_start error!Error Code:<%d>\n", g_x64_uc_err);
break;
}
g_x64_instruction_count++;
} while (g_x64_cs_count);
cs_close(&g_x64_cs_handle);
uc_close(g_x64_uc);
}
VOID x64_read_uc_registers()
{
uc_reg_read(g_x64_uc, UC_X86_REG_RAX, &g_x64_reg.reg.r_rax);
uc_reg_read(g_x64_uc, UC_X86_REG_RCX, &g_x64_reg.reg.r_rcx);
uc_reg_read(g_x64_uc, UC_X86_REG_RDX, &g_x64_reg.reg.r_rdx);
uc_reg_read(g_x64_uc, UC_X86_REG_RBX, &g_x64_reg.reg.r_rbx);
uc_reg_read(g_x64_uc, UC_X86_REG_RSP, &g_x64_reg.reg.r_rsp);
uc_reg_read(g_x64_uc, UC_X86_REG_RBP, &g_x64_reg.reg.r_rbp);
uc_reg_read(g_x64_uc, UC_X86_REG_RSI, &g_x64_reg.reg.r_rsi);
uc_reg_read(g_x64_uc, UC_X86_REG_RDI, &g_x64_reg.reg.r_rdi);
uc_reg_read(g_x64_uc, UC_X86_REG_RIP, &g_x64_reg.reg.r_rip);
uc_reg_read(g_x64_uc, UC_X86_REG_RFLAGS, &g_x64_reg.reg.r_rflag);
uc_reg_read(g_x64_uc, UC_X86_REG_R8, &g_x64_reg.reg.r_r8);
uc_reg_read(g_x64_uc, UC_X86_REG_R9, &g_x64_reg.reg.r_r9);
uc_reg_read(g_x64_uc, UC_X86_REG_R10, &g_x64_reg.reg.r_r10);
uc_reg_read(g_x64_uc, UC_X86_REG_R11, &g_x64_reg.reg.r_r11);
uc_reg_read(g_x64_uc, UC_X86_REG_R12, &g_x64_reg.reg.r_r12);
uc_reg_read(g_x64_uc, UC_X86_REG_R13, &g_x64_reg.reg.r_r13);
uc_reg_read(g_x64_uc, UC_X86_REG_R14, &g_x64_reg.reg.r_r14);
uc_reg_read(g_x64_uc, UC_X86_REG_R15, &g_x64_reg.reg.r_r15);
}
VOID x64_write_uc_registers()
{
uc_reg_write(g_x64_uc, UC_X86_REG_RAX, &g_x64_reg.reg.r_rax);
uc_reg_write(g_x64_uc, UC_X86_REG_RCX, &g_x64_reg.reg.r_rcx);
uc_reg_write(g_x64_uc, UC_X86_REG_RDX, &g_x64_reg.reg.r_rdx);
uc_reg_write(g_x64_uc, UC_X86_REG_RBX, &g_x64_reg.reg.r_rbx);
uc_reg_write(g_x64_uc, UC_X86_REG_RSP, &g_x64_reg.reg.r_rsp);
uc_reg_write(g_x64_uc, UC_X86_REG_RBP, &g_x64_reg.reg.r_rbp);
uc_reg_write(g_x64_uc, UC_X86_REG_RSI, &g_x64_reg.reg.r_rsi);
uc_reg_write(g_x64_uc, UC_X86_REG_RDI, &g_x64_reg.reg.r_rdi);
uc_reg_write(g_x64_uc, UC_X86_REG_RIP, &g_x64_reg.reg.r_rip);
uc_reg_write(g_x64_uc, UC_X86_REG_RFLAGS, &g_x64_reg.reg.r_rflag);
uc_reg_write(g_x64_uc, UC_X86_REG_R8, &g_x64_reg.reg.r_r8);
uc_reg_write(g_x64_uc, UC_X86_REG_R9, &g_x64_reg.reg.r_r9);
uc_reg_write(g_x64_uc, UC_X86_REG_R10, &g_x64_reg.reg.r_r10);
uc_reg_write(g_x64_uc, UC_X86_REG_R11, &g_x64_reg.reg.r_r11);
uc_reg_write(g_x64_uc, UC_X86_REG_R12, &g_x64_reg.reg.r_r12);
uc_reg_write(g_x64_uc, UC_X86_REG_R13, &g_x64_reg.reg.r_r13);
uc_reg_write(g_x64_uc, UC_X86_REG_R14, &g_x64_reg.reg.r_r14);
uc_reg_write(g_x64_uc, UC_X86_REG_R15, &g_x64_reg.reg.r_r15);
}
VOID x64_print_uc_registers()
{
printf("\n>--- --- --- %lld --- --- ---<\n", g_x64_instruction_count);
printf("%#16llx:\t%s\t%s\n",g_x64_cs_insn[0].address,g_x64_cs_insn[0].mnemonic,g_x64_cs_insn[0].op_str);
printf("rax=0x%16llx\n", g_x64_reg.reg.r_rax);
printf("rcx=0x%16llx\n", g_x64_reg.reg.r_rcx);
printf("rdx=0x%16llx\n", g_x64_reg.reg.r_rdx);
printf("rbx=0x%16llx\n", g_x64_reg.reg.r_rbx);
printf("rsp=0x%16llx\n", g_x64_reg.reg.r_rsp);
printf("rbp=0x%16llx\n", g_x64_reg.reg.r_rbp);
printf("rsi=0x%16llx\n", g_x64_reg.reg.r_rsi);
printf("rdi=0x%16llx\n", g_x64_reg.reg.r_rdi);
printf("rip=0x%16llx\n", g_x64_reg.reg.r_rip);
printf("rfl=0x%16llx\n", g_x64_reg.reg.r_rflag);
printf("r8 =0x%16llx\n", g_x64_reg.reg.r_r8);
printf("r9 =0x%16llx\n", g_x64_reg.reg.r_r9);
printf("r10=0x%16llx\n", g_x64_reg.reg.r_r10);
printf("r11=0x%16llx\n", g_x64_reg.reg.r_r11);
printf("r12=0x%16llx\n", g_x64_reg.reg.r_r12);
printf("r13=0x%16llx\n", g_x64_reg.reg.r_r13);
printf("r14=0x%16llx\n", g_x64_reg.reg.r_r14);
printf("r15=0x%16llx\n", g_x64_reg.reg.r_r15);
}
VOID x64_print_uc_stack(DWORD64 rsp)
{
DWORD64 val = 0;
for (ULONG i = 5; i > 0; i--)
{
uc_mem_read(g_x64_uc, (DWORD64)(rsp - i * 8), &val, sizeof(DWORD64));
printf("\t|%16llx|\n", val);
}
uc_mem_read(g_x64_uc, (DWORD64)rsp, &val, sizeof(DWORD64));
printf("===> |%16llx|\n", val);
for (ULONG i = 1; i < 5; i++)
{
uc_mem_read(g_x64_uc, (DWORD64)(rsp + i * 8), &val, sizeof(DWORD64));
printf("\t|%16llx|\n", val);
}
}上述代码是模拟x86_64程序,这个cpu模拟器框架还支持arm,aarch64,mips,risc-v,risc-v 64等汇编模拟。后续还会给出模拟risc-v 64程序的步骤。
学习过程中还有很多不足,还望朋友们指正!